Sourcecode: Example2.c



Sourcecode: Example2.c

] COLLABORATORS
TITLE :
Sourcecode: Example2.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME




Sourcecode: Example2.c iii

Contents

1 Sourcecode: Example2.c 1
L1 Example2.c . . . . . o e e e e 1




Sourcecode: Example2.c

Chapter 1

Sourcecode: Example2.c

1.1 Example2.c

/***k*k~k*******k‘k*k~k******~k*k‘k~k********k***k*k*************‘k*‘k******/

/ * */
/+ BAmiga C Encyclopedia (ACE) Amiga C Club (ACC) =/
J*x —mmm e e */
/ * */
/* Manual: AmigaDOS Amiga C Club */
/+ Chapter: Files Tulevagen 22 */
/+ File: Example2.c 181 41 LIDINGO */
/+ Author: Anders Bjerin SWEDEN */
/* Date: 93-03-11 */
/* Version: 1.0 */
/ * */
/ * Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/ * x/
/* Registered members may use this program freely in their =/
/ * own commercial/noncommercial programs/articles. */
/ * */

/***********************************************************/

/* This program will reads ten integer values from an =/
/+ already existing file called "HighScore.dat" which =/
/+ 1s located on the RAM disk. (This file was created =/
/+* by Examplel.) */

/+ Include the dos library definitions: =*/
#include <dos/dos.h>

/+* Now we include the necessary function prototype files:

#include <clib/dos_protos.h> /* General dos functions...
#include <stdio.h> /* Std functions [printf()...]
#include <stdlib.h> /* Std functions [exit()...]

/* Set name and version number: =*/
UBYTE *version = "S$VER: AmigaDOS/InputOutput/Example2 1.0";




Sourcecode: Example2.c

2/3

/* Declared our own function(s): =/

/x Our main function: =%/
int main( int argc, char xargv[] );

/* Main function: =*/

int main( int argc, char xargvl[] )

{
/* A "BCPL" pointer to our file: x/
BPTR my_file;

/+ The numbers: (10 integers will be collected) =/
int my_highscore[ 10 1;

/* Store here the number of bytes actually collected: x/
long bytes_read;

/* A simple loop variable: =/
int loop;

/+ Since we want to collect some data from an already existing =/
/x file we must open the file "HighScore.dat" as an old file: «/
my_file = Open( "RAM:HighScore.dat", MODE_OLDFILE );

/* Have we opened the file successfully? =*/
if( 'my_file )
{
/+ Inform the user: =/
printf( "Error! Could not open the file!\n" );

/+ Exit with an error code: */
exit ( 20 );

/* The file has now been opened: =/
printf( "File open!\n" );

/* Load the values: x/
printf ( "Loading values...\n" );

/+ Collect 10 integers (40 bytes): =/
bytes_read = Read( my_file, my_highscore, sizeof( my_highscore )

/* Did we get all data? «/
if( bytes_read !'= sizeof( my_highscore ) )
{

/+* No! We could not read all values! =/

)i




Sourcecode: Example2.c

3/3

printf( "Error! Could read all values!\n" );

/* Close the file: */
Close( my_file );

/+* Exit with an error code: x/
exit ( 21 );
}
else
{
/% OK! «*/
printf( "All values were successfully collected!\n"

/x Print the values: =*/
for( loop=0; loop < 10; loop++ )
printf ( "Highscore[%d] = %8d\n", loop, my_highscore][

/+ Close the file: «/
if( Close( my_file ) )
printf( "File closed!\n" );
else
printf( "Error! File could not be closed!\n" );

/* Remember that even if the file could not be */
/* closed we must NOT try to close it again! */

/* The End! =*/
exit( 0 );

)i

loop

]

)i




	Sourcecode: Example2.c
	Example2.c


